• Zhang, X., Sun, C. & Fang, N. Manufacturing at nanoscale: Top-down, bottom-up and system engineering. J. Nanopart. Res. 6(1), 125–130. https://doi.org/10.1023/B:NANO.0000023232.03654.40 (2004).

    ADS 
    Article 

    Google Scholar 

  • Bridgman, P. W. Effects of high shearing stress combined with high hydrostatic pressure. Phys. Rev. 48(10), 825–847. https://doi.org/10.1103/PhysRev.48.825 (1935).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Edalati, K. & Horita, Z. A review on high-pressure torsion (HPT) from 1935 to 1988. Mater. Sci. Eng. A 652, 325–352. https://doi.org/10.1016/j.msea.2015.11.074 (2016).

    CAS 
    Article 

    Google Scholar 

  • Rosochowski, A. & Olejnik, L. Numerical and physical modelling of plastic deformation in 2-turn equal channel angular extrusion. J. Mater. Process. Technol. 125–126, 309–316. https://doi.org/10.1016/S0924-0136(02)00339-4 (2002).

    Article 

    Google Scholar 

  • Abdelali, H. B., Salem, W. B., Rech, J., Dogui, A. & Kapsa, P. Design and Modeling of Mechanical Systems 541–548 (Springer, 2013). https://doi.org/10.1007/978-3-642-37143-1.

    Book 

    Google Scholar 

  • Courbon, C. et al. Further insight into the chip formation of ferritic–pearlitic steels: Microstructural evolutions and associated thermo-mechanical loadings. Int. J. Mach. Tools Manuf 2014(77), 34–46. https://doi.org/10.1016/j.ijmachtools.2013.10.010 (2016).

    Article 

    Google Scholar 

  • Childs, T. H. C., Maekawa, K., Obikawa, T. & Yamane, Y. Metal Machining (Elsevier, 2000).

    Google Scholar 

  • Medina-Clavijo, B. et al. Microstructural aspects of the transition between two regimes in orthogonal cutting of AISI 1045 steel. J. Mater. Process. Technol. 260, 87–96. https://doi.org/10.1016/j.jmatprotec.2018.05.016 (2018).

    CAS 
    Article 

    Google Scholar 

  • Mondelin, A., Valiorgue, F., Rech, J., Coret, M. & Feulvarch, E. Modeling of surface dynamic recrystallisation during the finish turning of the 15–5PH steel. Procedia CIRP 8, 311–315. https://doi.org/10.1016/j.procir.2013.06.108 (2013).

    Article 

    Google Scholar 

  • Pu, C. L., Zhu, G., Yang, S. B., Yue, E. B. & Subramanian, S. V. Effect of dynamic recrystallization at tool-chip interface on accelerating tool wear during high-speed cutting of AISI1045 steel. Int. J. Mach. Tools Manuf. 100, 72–80. https://doi.org/10.1016/j.ijmachtools.2015.10.006 (2016).

    Article 

    Google Scholar 

  • Courbon, C. et al. Towards a physical FE modelling of a dry cutting operation: Influence of dynamic recrystallization when machining AISI 1045. Procedia CIRP 8, 516–521. https://doi.org/10.1016/j.procir.2013.06.143 (2013).

    Article 

    Google Scholar 

  • Medina-Clavijo, B. et al. In-SEM micro-machining reveals the origins of the size effect in the cutting energy. Sci. Rep. 11(1), 2088. https://doi.org/10.1038/s41598-021-81125-7 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ameli Kalkhoran, S. N., Vahdati, M. & Yan, J. Effect of relative tool sharpness on subsurface damage and material recovery in nanometric cutting of mono-crystalline silicon: A molecular dynamics approach. Mater. Sci. Semicond. Process. 108, 104868. https://doi.org/10.1016/j.mssp.2019.104868 (2020).

    CAS 
    Article 

    Google Scholar 

  • Kurmanaeva, L. et al. Grain refinement and mechanical properties in ultrafine grained Pd and Pd–Ag alloys produced by HPT. Mater. Sci. Eng. A 527(7–8), 1776–1783. https://doi.org/10.1016/j.msea.2009.11.001 (2010).

    CAS 
    Article 

    Google Scholar 

  • Ames, M. et al. Unraveling the nature of room temperature grain growth in nanocrystalline materials. Acta Mater. 56(16), 4255–4266. https://doi.org/10.1016/j.actamat.2008.04.051 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Liao, Z. et al. On the influence of gamma prime upon machining of advanced nickel based superalloy. CIRP Ann. https://doi.org/10.1016/j.cirp.2018.03.021 (2018).

    Article 

    Google Scholar 

  • Zhou, X., Li, X. Y. & Lu, K. Enhanced thermal stability of nanograined metals below a critical grain size—Supplementary. Science 360(6388), 526–530. https://doi.org/10.1126/science.aar6941 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Yao, N. Focused Ion Beam Systems: Basics and Applications (Cambridge University Press, 2007).

    Book 

    Google Scholar 

  • Liao, Z. et al. Surface integrity in metal machining—Part I: Fundamentals of surface characteristics and formation mechanisms. Int. J. Mach. Tools Manuf. 162, 103687. https://doi.org/10.1016/j.ijmachtools.2020.103687 (2021).

    Article 

    Google Scholar 

  • Calcagnotto, M., Ponge, D., Demir, E. & Raabe, D. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater. Sci. Eng. A 527(10–11), 2738–2746. https://doi.org/10.1016/j.msea.2010.01.004 (2010).

    CAS 
    Article 

    Google Scholar 

  • Padmavathi, D. A. Potential energy curves & material properties. MSA 02(02), 97–104. https://doi.org/10.4236/msa.2011.22013 (2011).

    CAS 
    Article 

    Google Scholar 

  • Rafael Velayarce, J., Zamanzade, M., Torrents Abad, O. & Motz, C. Influence of single and multiple slip conditions and temperature on the size effect in micro bending. Acta Mater. 154, 325–333. https://doi.org/10.1016/j.actamat.2018.05.054 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Demir, E. & Raabe, D. Mechanical and microstructural single-crystal bauschinger effects: Observation of reversible plasticity in copper during bending. Acta Mater. 58(18), 6055–6063. https://doi.org/10.1016/j.actamat.2010.07.023 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Stüwe, H. P., Padilha, A. F. & Siciliano, F. Competition between recovery and recrystallization. Mater. Sci. Eng. A 333, 361–367 (2002).

    Article 

    Google Scholar 

  • Elsey, M., Esedo, S. & Smereka, P. Diffusion generated motion for recrystallization and grain growth. J. Phys. D Appl. Phys. 2, 1–24 (2009).

    Google Scholar 

  • Zhang, X., Godfrey, A., Huang, X., Hansen, N. & Liu, Q. Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire. Acta Mater. 59(9), 3422–3430. https://doi.org/10.1016/j.actamat.2011.02.017 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Li, Y. et al. Segregation stabilizes nanocrystalline bulk steel with near theoretical strength. Phys. Rev. Lett. 113, 1–5. https://doi.org/10.1103/PhysRevLett.113.106104 (2014).

    CAS 
    Article 

    Google Scholar 

  • Nematollahi, Gh. A., Grabowski, B., Raabe, D. & Neugebauer, J. Multiscale description of carbon-supersaturated ferrite in severely drawn pearlitic wires. Acta Mater. 111, 321–334. https://doi.org/10.1016/j.actamat.2016.03.052 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hosseini, S. B., Thuvander, M., Klement, U., Sundell, G. & Ryttberg, K. Atomic-scale investigation of carbon atom migration in surface induced white layers in high-carbon medium chromium (AISI 52100) bearing steel. Acta Mater. 130, 155–163. https://doi.org/10.1016/j.actamat.2017.03.030 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hono, K. Nanoscale microstructural analysis of metallic materials by atom probe field ion microscopy. Prog. Mater. Sci. 47(6), 621–729. https://doi.org/10.1016/S0079-6425(01)00007-X (2002).

    CAS 
    Article 

    Google Scholar 

  • Zhang, X., Godfrey, A., Hansen, N. & Huang, X. Hierarchical structures in cold-drawn pearlitic steel wire. Acta Mater. 61(13), 4898–4909. https://doi.org/10.1016/j.actamat.2013.04.057 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Saitoh, K. et al. Molecular dynamics study on nano-sized wiredrawing: Possible atomistic process and application to pearlitic steel wire. IOP Conf. Ser. Mater. Sci. Eng. 307, 012039. https://doi.org/10.1088/1757-899X/307/1/012039 (2018).

    Article 

    Google Scholar 

  • Greer, J. R. & De Hosson, J. T. M. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56(6), 654–724. https://doi.org/10.1016/j.pmatsci.2011.01.005 (2011).

    CAS 
    Article 

    Google Scholar 

  • Fritz, R., Maier-Kiener, V., Lutz, D. & Kiener, D. Interplay between sample size and grain size: Single crystalline vs. ultrafine-grained chromium micropillars. Mater. Sci. Eng. A 674, 626–633. https://doi.org/10.1016/j.msea.2016.08.015 (2016).

    CAS 
    Article 

    Google Scholar 

  • Yao, H. Y., Yun, G. H. & Fan, W. L. Size effect of the elastic modulus of rectangular nanobeams: Surface elasticity effect. Chin. Phys. B 22(10), 1–5. https://doi.org/10.1088/1674-1056/22/10/106201 (2013).

    Article 

    Google Scholar 

  • Chen, Z. et al. Nano-scale characterization of white layer in broached inconel 718. Mater. Sci. Eng. A 684, 373–384. https://doi.org/10.1016/j.msea.2016.12.045 (2017).

    CAS 
    Article 

    Google Scholar 

  • Giallonardo, J. D., Erb, U., Aust, K. T. & Palumbo, G. The influence of grain size and texture on the Young’s modulus of nanocrystalline nickel and nickel–iron alloys. Philos. Mag. 91(36), 4594–4605. https://doi.org/10.1080/14786435.2011.615350 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Barmatz, M. & Chen, H. S. Young’s modulus and internal friction in metallic glass alloys from 1.5 to 300 K. Phys. Rev. B 9(10), 4073–4083. https://doi.org/10.1103/PhysRevB.9.4073 (1974).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Armendia, M., Garay, A., Villar, A., Davies, M. A. & Arrazola, P. J. High bandwidth temperature measurement in interrupted cutting of difficult to machine materials. CIRP Ann. Manuf. Technol. 59(1), 97–100. https://doi.org/10.1016/j.cirp.2010.03.059 (2010).

    Article 

    Google Scholar 

  • By AKDSEO